
LCCC MBSE Workshop, Lund

May 4, 2015

 Peter Fritzson
 peter.fritzson@liu.se

 Vice Chairman of Modelica Association

 Director of Open Source Modelica Consortium

 Professor at Linköping University

Integrated Modeling of CPS including Requirements:

Open Source MBSE Tools Based on Modelica and UML

mailto:peter.fritzson@liu.se

2

Industrial Challenges for Complex Cyber-Physical

System Products of both Software and Hardware

• Increased Software Fraction

• Shorter Time-to-Market

• Higher demands on effective

strategic decision making

• Cyber-Physical (CPS) – Cyber (software)

Physical (hardware) products

3

Open Source Model-Based Development Environment

Covers Product-Design V – (OPENPROD ITEA2 Project)

Product
models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML & OWL

B usiness
Process

Control

Requirements

Capture

Model - Driven
Design

(PIM)

Compilat ion
& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML

Business
Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation
& Code Gen

System

Simulation

Software &

System Product
Platform
models

Process
models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

 System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

4

New Big Modelica Book, 2014 (Warning! Commercial)

Peter Fritzson

Principles of Object Oriented

Modeling and Simulation with

Modelica 3.3:

A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

http://www.openmodelica.org/
http://www.modelica.org/

5

Overview of this Talk

• Part I – Introduction to the OpenModelica Open

Source MBSE Environment

• Part II – Dynamic debugging of equation-based

models

• Part III – Dynamic verification/testing of formalized

requirements vs Models in MBSE

6

Part I

Introduction to the OpenModelica Environment

7

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

7

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizer collocation

• ModelicaML UML Profile

• MetaModelica extension

• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG

8

Industrial members
• ABB AB, Sweden

• Bosch Rexroth AG, Germany

• Siemens Turbo, Sweden

• CDAC Centre, Kerala, India

• Creative Connections, Prague

• DHI, Aarhus, Denmark

• EDF, Paris, France

• Equa Simulation AB, Sweden

• Fraunhofer IWES, Bremerhaven

• IFP, Paris, France

 Open-source community services

• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics

• Austrian Inst. of Tech, Austria

• UC Berkeley, USA

•TU Berlin, Insti UEBB, Germany

• FH Bielefeld, Bielefeld, Germany

•TU Braunschweig, Germany

• Univ Calabria, Italy

• TU Dortmund, Germany

• TU Dresden, Germany

• Université Laval, Canada

• Ghent University, Belgium

• Halmstad University, Sweden

• Heidelberg University, Germany

University members

OSMC – International Consortium for Open Source

Model-based Development Tools, 43 Members

Founded Dec 4, 2007
• ISID Dentsu, Tokyo, Japan

• ITI, Dresden, Germany

• Maplesoft, Canada

• Ricardo Inc., USA

• RTE, France

•TLK Thermo, Germany

•Sozhou Tongyuan, China

• VTI, Linköping, Sweden

• VTT, Finland

• Wolfram MathCore, Sweden

• TU Hamburg/Harburg Germany

• Linköping University, Sweden

• KTH, Stockholm, Sweden

• Univ of Maryland, Syst Eng USA

• Univ of Maryland, CEEE, USA

• Politecnico di Milano, Italy

• Ecoles des Mines, CEP, France

• Mälardalen University, Sweden

• Univ Pisa, Italy

• Univ StellenBosch, South Africa

•Telemark Univ College, Norway

9

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables;

separate compilation

• Syntax highlighting

• Code completion,

Code query support for developers

• Automatic Indentation

• Debugger

10
10

OpenModelica Eclipse MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within

Modelica files

Identifier Info on

Hovering

11

General Tool Interoperability & Model Exchange

Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a

Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 50 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

12

FMI in OpenModelica

• FMI Model Exchange implemented (FMI 1.0 and FMI 2.0)

• A prototype of FMI 2.0 co-simulation is available

• Ongoing work to support full FMI 2.0 co-simulation

• The FMI interface is accessible via the OpenModelica scripting

environment and the OpenModelica connection editor

13

OpenModelica Simulation in Web Browser Client

OpenModelica compiles

to efficient

Java Script code which is

executed in web browser

MultiBody RobotR3.FullRobot

14

Modelica3D Library with OpenModelica

• Modelica 3D

Graphics Library

by Fraunhofer

FIRST, Berlin

• Part of

OpenModelica

distribution

• Can be used for

3D graphics in

OpenModelica

15

Problems

Solved problems Result plot Export result data .csv

OMOptim – Parameter Sweep Design Optimization

Here

Pareto

front

optimiza-

tion

16

Optimization of Dynamic Trajectories Using

Multiple-Shooting and Collocation

• Minimize a goal function subject to model

equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

In OpenModelica 1.9.1

beta release Jan 2014.

17

OMnotebook Interactive Electronic Notebook

Here Used for Teaching Control Theory

18

MetaModelica Language Extension for

Model Transformations and Advanced Applications

• Large-scale existing application – OpenModelica

compiler written in MetaModelica, compiling itself

• MetaModelica language extension

• single assignment equations (with opt. patterns)

• tree data structures, garbage collection

• pattern equations

• matching, backtracking

• Very efficient portable implementation (compiles to C)

• Now ongoing standardization in Modelica

Association targeting Modelica 3.4

19

Faster Simulation – Compiling Modelica to Multi-Core
Speedup on NVIDIA, Modelica Model, Generated Code, n Problem Size

20

Part II

Equation-Based Model Dynamic Debugging

21

Need for Debugging Tools

Map Low vs High Abstraction Level

• A major part of the total cost of software projects

is due to testing and debugging

• US-Study 2002:

Software errors cost the US economy annually~ 60 Billion $

• Problem: Large Gap in Abstraction Level

from Equations to Executable Code

• Example error message (hard to understand)

Error solving nonlinear system 132

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

22

Model Compiler Translation Phases

Extended with Debugging

• Include

debugging

support within

the translation

process

Save element position

Normal Translation ProcessDebugging Translation

Process Additional Steps

Save element origin

(model and position)

Save equation elements origin

(model and position)

Executable

C Code

Optimized sorted
equations

Sorted equations

Flat Model

Modelica model

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Save the optimizer

transformations changes

Save all the available

origin information

Executable with all the

available origin information

Simulation with run-time

debugging functionality

23

Example Symbolic Transformations

with Compiler Debug Trace

(1) substitution:

 y + der(x * (time * z))

 =>

 y + der(x * (time * 1.0))

(2) simplify:

 y + der(x * (time * 1.0))

 =>

 y + der(x * time)

(3) expand derivative

(symbolic diff):

 y + der(x * time)

 =>

 y + (x + der(x) * time)

(4) solve:

 0.0 = y + (x + der(x) * time)

 =>

 der(x) = ((-y) - x) / time

Example: 0 = y + der(x * time * z); z = 1.0;

• Complicated to understand source of some errors

• Efficient trace of transformations – low overhead

24

Properties of Transformation Trace

 Most equations have

very few transformations

on them

 Most of the interesting

equations have a few

 Still rather readable

 Some extra care to

handle Modelica variable

aliasing

 Very efficient

implementation, max 1%

overhead

Ops Frequency Comment

0 457 Parameters

1 89 Dummy eq & know var

2 720 Alias vars

3 479 Alias vars

4 124 Alias after simplify

5 25 Alias after simplify

6 99 Alias after simplify

7 55 Scalar eq

8 37 ...

9 110 ...

10 72 ...

11 12 ...

12 25 ...

13 35 ...

14 3 Known constant after many
replacements

21 27 World object (3x3 matrix with
many occurances of aliased
vars)

MSL 3.1 MultiBody DoublePendulum

25

Mapping dynamic run-time error to source model position

Integrated Static-Dynamic

OpenModelica Equation Model Debugger

Showing

equation

transfor

mations

of a

model:

Efficient

handling

of

Large

Equation

Systems

26

Example – Detecting Source of Chattering

(excessive event switching) causing bad performance

• Lkjlkjlj

• Lkjlkj

• lkjklj

equation

 z = if x > 0 then -1 else 1;

 y = 2 * z;

…

27

Error Indication – Simulation Slows Down

28

Transformations Browser – EngineV6 Overview

(11 116 equations in model)

29

Browsing Equation Transformation Chains

Closeup of EngineV6 Equations

30

Performance Profiling
(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

31

OpenModelica Eclipse MDT

Algorithmic Code Debugger

32

Adding Breakpoints

33

• ABB OPTIMAX® provides advanced model based

control products for power generation and water utilities.

• ABB: “OpenModelica provides outstanding debugging

features that help to save a lot of time during model

development.”

ABB Commercial Application Use of Debugger

34

Part III

Dynamic Verification/Testing of

Requirements vs Usage Scenario Models

Wladimir Schamai, Lena Buffoni, Peter Fritzson

and contributions from MODRIO partners

35

OpenModelica and Papyrus Based Model-Based

Development Environment to Cover Product-Design V

Product
models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML & OWL

B usiness
Process

Control

Requirements

Capture

Model - Driven
Design

(PIM)

Compilat ion
& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML

Business
Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation
& Code Gen

System

Simulation

Software &

System Product
Platform
models

Process
models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

 System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

36

Business Process Control and Modeling

Product

models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML & OWL

B usiness
Process

Control

Requirements

Capture

Model - Driven

Design

(PIM)

Compilat ion

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML

Business
Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation
& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Metso Business model & simulation

VTT Simantics Graphic Modeling Tool

OpenModelica based simulation

Simulation of 3 strategies with

outcomes

VTT Simantics

Business process modeler

OpenModelica

compiler & simulator

37

Requirement Capture

Product

models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML & OWL

B usiness
Process

Control

Requirements

Capture

Model - Driven

Design

(PIM)

Compilat ion

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta - modeling & Modelica & UML

Business
Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

OpenModelica based simulation

vVDR (virtual Verification of

Designs against Requirements)

in ModelicaML UML/Modelica

Profile, part of OpenModelica

Design Model

Scenario Model

Requirement

Models

Verification Model

Binding

Provider from

design model

Client from requirement model

38

OpenModelica – ModelicaML UML Profile
Based on Open-Source Papyrus UML and OpenModelica

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities,

Requirements)

• Which do not yet exist in Modelica language (extension work ongoing)

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica

39

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times (there are 2 tanks in
the system)

tank-height is 0.6m

Req. 001 for the tank2 is violated

Req. 001 for the tank1 is not violated

40

ModelicaML: Graphical Notation

a

Structure

Behavior

Requirements

41

Example: Representation of System Structure

Interconnections

Inheritance

Components

42

Example: Representation of System Behavior

State Machine
of the Tank

State Machine of the
Controller

Conditional Algorithm
(Activity Diagram)

43

Example: Representation of System Requirements

Textual Requirement Formalized Requirement

44

vVDR Method –

virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM
Requirement

Monitor Models

Scenario

Models
SM

Designs

Alternative

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand

verification of designs

against requirements

using automated model

composition at any time

during development.

AUTOMATED

Actor

Reports

*

45

Challenge

We want to verify different design alternatives against sets of requirements

using different scenarios. Questions:

1) How to find valid combinations of design alternatives, scenarios and requirements in

 order to enable an automated composition of verification models?

2) Having found a valid combination: How to bind all components correctly?

…

Create Verification
Models

… RMM

1. Verification

Model
VM DAM SM

2. Verification

Model
VM …

…

Requirement

Models

Scenario

Models

Designs Alternative

Models

DAM
SM

DAM

DAM
SM

SM

SM
SM

SM
RMM

1

RMM

RMM

RMM

RMM
SM

RMM

RMM

RMM

RMM

… …

n. Verification

Model

*

46

Composing Verification Models
main idea

• Collect all scenarios, requirements, import mediators

• Generate/compose verification models automatically:
• Select the system model to be verified

• Find all scenarios that can stimulate the selected system model (i.e., for

each mandatory client check whether the binding expression can be inferred)

• Find requirements that are implemented in the selected system model (i.e.,

check whether for each requirement for all mandatory clients binding

expressions can be inferred)

• Present the list of scenarios and requirements to the user
• The user can select only a subset or scenarios or requirements he/she

wishes to consider

47

Generating/Composing Verification Models
algorithm

48

Simulation and Report Generation in ModelicaML

Verification models are

simulated.

The generated Verification

Report is a prepared summary of:

• Configuration, bindings

• Violations of requirements

• etc.

49

Continuous and Discrete Time Locators for Time-related

Requirements – Work in MODRIO project by EDF, LIU, DLR, DS, ..

• A Continuous Time Locator(CTL) specifies one or more time

intervals

• Time intervals have a duration

• They usually have a position in time,

but a sliding time window defines any

time period of a given duration

• A Discrete Time Locator (DTL) defines one or more positions in time

and has no duration

• An event is associated with a DTL

that specifies when the event occurred

• The difference between events and

DTLs is that a DTL is not an object

• That position may be relative to the initialisation of the system or

to another DTL

time

time

duration

time

50

Time Locators Expressed in Modelica

Special FORML-L syntax Standard Modelica syntax

duringAny duration duringAny(duration)

after event after(event)

after event1 untilNext event2 afterUntil(event1, event2)

after event for duration afterFor(event, duration)

after event within duration afterWithin(event, duration)

until event until(event)

every duration1 for duration2

everyFor(duration1, duration2)

when condition changes Maps to Modelica if

51

From Text to Simulated Requirement

– Modelica Extended with new Operators

model P2a extends Condition;

 input ConditionStatus bPSNeeded, sARequired, set1Powered;

equation

 status = if afterWithin (bPSNeeded == notViolated and

 sARequired == notViolated, 20) then

 if set1Powered == notViolated then

 notViolated else violated else undefined;

 end P2a;
BPS.Needed and SA.Required

s20 s20

t = 0 time

BPS.Needed and SA.Required

Set1.Powered must become true within the

timeframe s20 and remain true afterwards

From a text requiremen expressing a condition:

A - In the absence of any Backup Power Supply (BPS) component failure or in the presence of
a single sensor failure, when the BPS is not under maintenance, in case of loss of MPS, and if
safety injection is required, Set1 must be powered within 20 s

52

From Text to Simulated Requirement –

Requirement not Violated – OpenModelica Simulation

Within 20s

BPS Powered

Requirement

undefined

outside the

specified time

window

Requirement

validated

BPS.Needed and SA.Required

s20

t = 0 time
t = 10 t = 25

Set1.Powered

3-valued logic

 prototype:

1 – true

0 – false

-1 – undefined

Linköping university

Industrial Use Case for Requirements

Verification and Model Composition in ModelicaML

OPENPROD-Project Case Study, performed 2012; presented 2013

•Wladimir SCHAMAI (EADS Innovation Works, Germany)

•Peter Fritzson (Linköping University)

•Audrey JARDIN (EDF - R&D, France)

•Daniel BOUSKELA (EDF - R&D, France)

•Mar. 2013

54

EDF Use Case – System Description of SRI system
(Intermediate Cooling System) in turbine hall of a nuclear power plant

Heat exchanger 1

Heat exchanger 2

Pump 1

Pump 2

Pump 3

Source of heat

LC 2 LC 1

LC 3

LC 5

LC 6

LC 4

Sensor of
temperature

Regulating valve 1

Regulating valve 2

Bypass valve

Leak

Users valve

Feeding tank Feeding on-off valve
TOR alimentation

Tube T2 Tube T1
Tube
T5

Tube
T6

Tube T4

Tube
T8

 Cooling system

Water
feeding

Water

circulation

Auxiliary
equipment

LC : Limit condition

55

System Requirements

- #002: The set point of the SRI water temperature must be held at a

minimum value of 17°C.

- #003: In a normal operating mode, the water temperature of the SRI

circuit should be between Ts - e and Ts + e (Ts : set point temperature).

- #0083: A pump must not start more than 3 times per hour.

- #013: In a normal operating mode, there must not be less than 2

operating pumps during more than 2s.

- #007: The water temperature must not vary more than 10°C/hour.

56

SRI Case Study Conclusion and Lessons Learnt

• Showed applicability of vVDR method to realistic industrial

applications

• ModelicaML is a promising prototype implementation of the vVDR

method, needs improved usability and stability

• Lessons learnt:

• Formalized requirements should be tested separately in order to

ensure correctness

• Model validity asserts must be included

• Parameterized requirement monitors can be re-used as library

components (later realized in MODRIO project)

• Work is continued in the ITEA2 MODRIO project

• Stochastic aspects (model uncertainties, tolerances in

requirements, ...) should be taken into account

